A Short Elementary Proof of the Insolvability of the Equation of Degree 5
نویسنده
چکیده
We present short elementary proofs of the well-known Ruffini-Abel-Galois theorems on unsolvability of algebraic equations in radicals. This proof is obtained from existing expositions by stripping away material not required for the proof (but presumably required elsewhere). In particular, we do not use the terms ‘Galois group’ and even ‘group’. However, our presentation is a good way to learn (or recall) the starting idea of Galois theory: to look at how the symmetry of a polynomial is decreased when a radical is extracted. So the note provides a bridge (by showing that there is no gap) between elementary mathematics and Galois theory. The note is accessible to students familiar with polynomials, complex numbers and permutations; so the note might be interesting easy reading for professional mathematicians.
منابع مشابه
A short proof of the maximum conjecture in CR dimension one
In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...
متن کاملA SHORT PROOF FOR THE EXISTENCE OF HAAR MEASURE ON COMMUTATIVE HYPERGROUPS
In this short note, we have given a short proof for the existence of the Haar measure on commutative locally compact hypergroups based on functional analysis methods by using Markov-Kakutani fixed point theorem.
متن کاملOn the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture
The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...
متن کاملGroups with one conjugacy class of non-normal subgroups - a short proof
For a finite group $G$ let $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. We give a short proof of a theorem of Brandl, which classifies finite groups with $nu(G)=1$.
متن کاملA simple proof of Zariski's Lemma
Our aim in this very short note is to show that the proof of the following well-known fundamental lemma of Zariski follows from an argument similar to the proof of the fact that the rational field $mathbb{Q}$ is not a finitely generated $mathbb{Z}$-algebra.
متن کامل